TEXT MINING WITH LUCENE AND HADOOP:

DOCUMENT CLUSTERING WITH FEATURE EXTRACTION

BY

DIPESH SHRESTHA

A THESIS SUBMITTED FOR THE FULFILLMENT

OF

RESEARCH DEGREE

TO

WAKHOK UNIVERSITY

2009

ABSTRACT

In this work a new method for document clustering has been adapted using non-
negative matrix factorization. The key idea is to cluster the documents after measuring the
proximity of the documents with the extracted features. The extracted features are
considered as the final cluster labels and clustering is done using cosine similarity which

is equivalent to k-means with a single turn.

An application was developed using apache lucene for indexing documents and
map-reduce framework of apache hadoop project was used for parallel implementation of
k-means algorithm from apache mahout project. This application was named 'Swami'. The
performance of models with proposed technique was conducted on news from 20
newsgroups datasets and the accuracy was found to be above 80% for 2 clusters and above
75% for 3 clusters. Since the experiments were carried only in one cluster of hadoop, the
significant reduction in time was obtained by map-reduce implementation when clusters

size exceeded 9 i.e. 40 documents averaging 1.5 kilobytes.

Thus it's concluded that the feature extracted using NMF can be used to cluster
documents considering them to be final cluster labels as in k-means, and for large scale
documents the parallel implementation using map-reduce can lead to reduction of

computational time.

ACKNOWLDEGEMENTS

I would like to thank my advisor professor Andoh Tomoharu for giving me the
opportunity to work on this project and his valuable guidance. I would also like to thank
ex-president of this university, Maruyama Fujio for building my interest in map-reduce,
professor Numata Yasuhide for his valuable help in understanding mathematical formulas.
I am grateful to Bishnu Prasad Gautam for being my supervisor, friends in apache mahout
and apache lucene project for their help in using the libraries. My thank goes to Bishal
Acharya for all his support. Finally, I am very indebted to Swami for always being with

me, my sister Kripa and my parents for their constant support and encouragement.

11

TABLE OF CONTENTS

CHAPTER L.ttt ettt ettt et e be e et e bt e sbeesaeeeeaes 1
INTRODUCTION.......oouitiieiieteet ettt sttt sttt et e saee e eneeee s 1
L1 IMIOTIVALION. ..ttt ettt ettt ettt be e st esat e et e s bt e st e e sbbeeabeeenaes 1
1.2 The organisation Of the thesis...........coiiiiiiiiiiiiiiieeeeeee 2
CHAPTER 2.ttt ettt et sttt et e sbeesneesaae e 4
BACKGROUND AND RELATED WORKcooiiiiiiiiieiieieeeeee e 4
2.1 TEXE MUINIIE .ovvveeeiiieeiiteeitee et ee ettt e et e e et e e esbeeesabeeesaseeeateesssteesasteesaseeesabeessaseeeeessnnnnes 4
2.1.1 Supervised LEArNINGcocuiiiiiiieiiieiie ettt 5
2.1.2 Unsupervised 1€arNINGcc.eeerieeiiiiiiiiieeiieeeiteeeite ettt et e s e e e e e 5

2.2 DOCUMENT CIUSTEIINE. ... vvveeeiieeiieeeiieeeiieeeiteeeieeeetteesteeesaeeesnbeeessasaeeeessennssreeeesannes 5

a. Document partitioning (Flat CIUStEIINg)......c.covvervierieniiiienieeieenreeeee e 6

b. Hierarchical CIUSIETING.........covviiiiiiiiiiiieeiieeee ettt e e e e e 6

2.3 Vector Space Model (VSM).....ooiiiiiiiiieeeteeeet ettt 6
2.3.1 Term-document matrix and term Weighting...........covvveeevueeerieeinieeniiieeeeeriiieeee. 6
2.3.2 Common Measure of Similarity in VSL.......cccooviiiiiiiniiiiiiieee e 8

2.4 FRAUIE EXITACTIONeeiuitieiiiieeiieeeite et e et e et e e ettt e et e e sabeeesabeeesabeesbteeseanbneeeeeseannes 9
2.5 Latent Semantic Indexing (LSI).......c.cevriiiiiiieiiiieiiee e e e e 10
2.5.1 Limitations of LSI and superiority of NMF............ccoooiiiiiiiiie 10

2.6 Non-negative matrix factorization (NMF)..........ccooiiiiiiiiniiiniiiiiiceceee e 11
2.6.1 MM AIZOTItRIM ...ooiiiiiiiiiiiiiie et et e 12

2.7 Document clustering with NMF..........ccoooiiiiiiiiiiiiicce e 13
CHAPTER 3.ttt ettt e b e ettt e bt et e bt e et e e e 15
METHODOLOGY ..ottt ettt ettt sttt e sttt sate e bt e sateebeesabeeeesnnaeeaenes 15

111

3.1 The Proposed MOEL..........cooiiiiiiiiieiiieeiieeeie et 15

3.1.1 The methodology adapted.............coouiiiiiiiiniiiiiiiii e 15
3.1.2 Steps in Indexing the documents in a folder............ccoeueeeiiieiiiiieeiiniiiiiieeeees 16

3.2 Parallel implementation of K-MeEans..........coccuveeriierniieeniieeriee e eiiveeeeees 17
3.2.1 MapReduce in KNMFEcoooiiiiiiiieeeeeeecee e 18

3.3 K-Means ALZOTitRM.......uieeiiiiiiiieiiieeeiie ettt et st esaaeaeeeas 19
3.3.1 Standard K-MEans...........eeiiiiiiiiiiiiiiiiieeeee et 19
3.3.2 Spherical k-means(k-means on a unit hypersphere)............ccoccveeveieeirinnieeennn. 20

3.4 MAPREAUCE. ..ottt et e e ettt e e e ettt e e e sabeeeeennateeeeennsnnes 20
I TN 5 F: d (0107 TR PPPUOPPPPPPPRN 21
3.5.1 Hadoop Distributed File System (HDFES).......c.cooviiiiiiiiniiieeeieeee e, 21
3.5.2 MapReduce framework in Hadoop..........cocveriiiiiiniiiiiiiicccececnececen 22
CHAPTER Q... ettt sttt ettt ettt e es 24
ARCHITECTURAL DESIGN/IMPLEMENTATION........cocoiiiiiiiiniiiieneeeeeeeee e 24
4.1 INFOIMALION. ..ccnetiiiiiiiiieiieete ettt ettt ettt et ae e et eeseneee 24
4.2 USE CASE DIAZIAMS. ...eeeuiieeiiieeiieeeiieeeiteeeieeesteeeseteeesateesareesaaeesssaeessnssaeeeeesnnnnsaees 25
4.3 TNEETTACES. .o ueteeenieeeit ettt et ettt e sttt e e e e et eas 30
CHAPTER 5.ttt st ettt sttt st e s 33
EXPERIMENTS AND RESULTS.....ciiiiieeee ettt e 33
5.1 Data Set DeSCTIPHION. ...cc.uviiiiiieeiieeeiie ettt ettt et e e e e e st e e e e esabeaaeeees 33
5.2 EXPEIIMENL...cccutiiiieiieeiiieeiiieeeiteeeieeeeteeesveeestaeeeateessseeessseeessseesssseeensseeeesensssseeeeeans 34
5.3 RESUILS. ..ttt et s 35
CHAPTER 6.ttt ettt sttt ettt st e e 37
CONCLUSION......e ettt ettt ettt et s e et e s et e et e e sabeeanbeeeenbbeeeesbeeesannees 37

v

CHAPTER 7....

FUTURE WORKS. ...t

REFERENCES

LIST OF FIGURES

Figure 4.1: The Use Case DI1agram...........ccoocueeiiiiiiiiiiniiiiniieiieeeieeeieeeee et 25
Figure 4.2: The Component DIiagram............cccueeriieeriiieiniieeniieeiiee et eieeesiee e 26
Figure 4.3: The Deployment Diagram............ccceevvuieiiiiieeriie e ereeeieeeeiee e 27
Figure 4.4: The Sequence Diagram for IndeXing........c..ccocceevviriienieniiiniiiniieeeeee e 28
Figure 4.5: The Sequence Diagram for CIUSIEIING.......ccocveerruiieriiieriieenieeeiee e esvee e 29
Figure 4.6: Indexing FIleS/FOIAETS........ccccooriiiiiiiiiiiiiceeceee e 30
FIgUIE 4.7: CIUSIETING. ...ccuviiiiiiieiiieeiee ettt ettt ettt te et e e et eesabeesbteesabbaeaeeseeanns 30
Figure 4.8: File fINdING.......cccooiiiiiiiiiiiie et 30
Figure 4.9: Extracted Features/Themes..........cocuviviiriiiniiniienieniececeeeeeeee e 31
FIigure 4.10: TOP WOTAS....cccoviieiiieeiieeeiteeeite ettt ettt st e e aae e st e e e e s e nabaeaeeeeennenns 32
Figure 5.1: Time taken by the clustering phase (k-means with 1 turn)........cccccceeeveeennnee. 36

LIST OF TABLES

Table 2.1: Term-dOCUMENT IMLATIIX. .. .ceeenee ettt et e e et e e et e e e e eeeeeeeeeaeeeeeeeeenas 7
Table 4.1 : Information aboUt SOFEWATE.........vueeeeeiiiiiiiiiieeeee ettt ettt e e ena e eeaans 24
Table 5.1: List of Topics Of 20 NEW GIOUPS......c.vieeviiieriiiieeiieenieeerieeereeereeeareesneeeeennens 33

TADIE 5.2 RESUILS. ..ot et e e e et e e e e et e e e e et e e e e e ee e e e e eaeenns 35

CHAPTER 1

INTRODUCTION

The need for the organisation of data is a must for a quick and efficient retrieval of
information. A robust means for organisation of data in any organisation has been the use
of databases. Databases like the relational, object-oriented or object-relational databases,
all have well structured format to keep data. Not all information that an organisation
generates is kept or can be kept in databases. Information are stored in the huge amount in
form of unstructured or semi-structured documents. Organising these documents into
meaningful groups is a typical sub-problem of Information Retrieval, in which there is

need to learn about the general content of data, Cutting D et al. [1].

1.1 Motivation

The primary structure for organisation of computer files are placing them into
folders and placing the folders again into some higher level folders. To place these files
into folders manually, information about the content of the files are needed. Typically the
name of file is enough to give impression of the contents of the files accordingly to which
the files can be grouped together. There are certain instances in which it becomes difficult
to manually group the files, for instance when they are in huge number, when their
contents can't be distinguished from their names. This is where there is an ardent need of

computer aided clustering of the documents.

Recently there has been surge of interest in document clustering after Lee and

Sung's [2,3] update rules for NMF proved to perform better than Latent Semantic

Indexing (LSI) with Singular Value Decomposition (SVD). Many researchers are
approaching with efficient algorithms and comprehensive comparison of the existing
algorithms [20,35] but, still, these have been limited to academics. In this work a new
working model based on Lee and Sung's [3] update rules for NMF is presented for

automatic document clustering with an application developed for its implementation.

For the experimentation purpose of this model, the data set from Newgroup 20
was used. To aid to NMF, removal of common clutter/stop-words using key-words from
Key Phrase Extraction Algorithm [6] and stemming from Porter algorithm [5] has been
utilised in pre-processing step. Finally, to study the performance of the map-reduce
framework in Hadoop the parallel implementation of k-means clustering algorithm has

been used.

The performance of models with proposed technique was conducted and found to
be above 80% for 2 clusters and above 75% for 3 clusters. The time taken was reduced by
map-reduce implementation when clusters size exceeded 9 i.e. 40 documents averaging

1.5 kilobytes.

1.2 The organisation of the thesis

The remaining part of the thesis is organised as follows:

Chapter 2: This chapter gives the background foundation of this work and the related
works in the field of document clustering.

Chapter 3: This chapter discusses the proposed model in details and also introduces

concepts of map-reduce and Apache Hadoop.

Chapter 4: In this chapter design and implementation of the proposed application is
discussed. It includes UML diagrams and interfaces diagrams.

Chapter 5: The experiment on the proposed model using the application is explained
here. Also the results are shown in this chapter.

Chapter 6: This chapter summarises the work with conclusion from the experiments
performed in Chapter 5.

Chapter 7: Finally the future works recommendation for this work in presented in this

chapter.

CHAPTER 2

BACKGROUND AND RELATED WORK

The following section gives background information on text mining, supervised and
unsupervised learning, document clustering, Vector Space Model, feature extraction and

NME. It finally shows how NMF has been used for document clustering.

2.1 Text mining

“Sifting through vast collections of unstructured or semi-structured data beyond
the reach of data mining tools, text mining tracks information sources, links isolated
concepts in distant documents, maps relationships between activities, and helps answer
questions.”

-Tapping the Power of Text Mining , Communications of the ACM, Sept. 2006

Text mining is a mechanism to understand and extract meaningful implicit
information from large amount of the semi-structured or unstructured text data. This
encompasses the combination of human linguistic capacity and computational power of
computers. The linguistic capacity includes the ability to differentiate spelling variations,
filter out noisy data, understanding the synonyms, slangs and abbreviations, and finding
the contextual meaning. The computational power of computers include the ability to
statistical/probabilistic processing of large volume at high speed. Some application of text
mining are: information extraction, topic detection and tracking, summarization,
categorization, clustering, concept linkage, information visualization etc. Broadly the text

mining algorithms can be categorized into supervised learning and unsupervised learning.

2.1.1 Supervised learning

Supervised learning is a technique in which the learning process is supervised by
correct data before the prediction is made on the targets. It consists of finding the
relationship between the predictor and target attribute. If the algorithm can predict a
categorical value for a target attribute, it is called a classification function. Class is an
example of a categorical variable which does not have partial ordering. For example,
labelling a customer as a possible buyer or not a possible buyer can be a classification
problem. If the algorithm can predict a numerical value then it is called regression.
Unlike the categorical values numerical values have partial ordering. For example,

forecasting the temperature the next day, estimating the profit/loss for the next term etc.

2.1.2 Unsupervised learning

Unlike the supervised learning this technique doesn't require training to yield
output. It only uses the predictor attribute values to gain understanding of the structure
and relationship of the data. Finding out the number of market segments, determining the
themes of news etc. can be examples of unsupervised learning. Algorithms under
unsupervised learning are feature extraction, clustering, association rule mining, density

estimation etc.

2.2 Document clustering

Document clustering can loosely be defined as “clustering of documents”.
Clustering is a process of understanding the similarity and/or dissimilarity between the
given objects and thus, dividing them into meaningful subgroups sharing common

characteristic. Good clusters are those in which the members inside the cluster have quite

a deal of similar characteristics. Since clustering falls under unsupervised learning,
predicting the documents to fall into certain class or group isn't done. The methods of

document clustering can be categorized into two groups;

a. Document partitioning (Flat Clustering)

This approach divides the documents into disjoint clusters. The various methods in this
category are : k-means clustering, probabilistic clustering using the Naive Bayes or
Gaussian model, latent semantic indexing (LSI), spectral clustering, non-negative matrix

factorization (NMF).

b. Hierarchical clustering
This approach finds successive clusters of document from obtained clusters either using

bottom-up (agglomerate) or top-bottom (divisive) approach.

2.3 Vector Space Model (VSM)

Various mathematical models have been proposed to represent Information
Retrieval systems and procedures; the boolean model, the probabilistic model, the vector
space model etc. Of the above models, the vector space model has been quite widely used

model.

2.3.1 Term-document matrix and term weighting
In VSM, a collection of d documents described by t terms can be represented as a
txd matrix A, commonly called term-document matrix. The column vectors are called

document vector representing the documents in the collection and the row vectors are

called term vectors representing the indexed terms from the documents. Each component
of the document vector reflects a particular term which may or may not be in the
document. The value of each component depends on the degree of relationship between
its associated term and the respective document, commonly called term weighting. As the
Vector Space Model requires that the relationship be described by a single numerical

value, let a; represent the degree of relationship between term 1 and document j.

a. Binary weighting

This is the simplest term weighting method where if a;=1 means term 1 occurs in
document j, a;=0 meaning otherwise. The binary weighting informs about the fact that a
term is somehow related to a document but carries no information on the strength of the

relationship.

b. Term frequency weighting
In this scheme a;; = tf;; where tf;; denotes how many times term 1 occurs in document j. This
scheme is more informative than the binary weighting but, nevertheless it suffers from

shortcoming as it focuses only on the local weight, neglecting the global weight.

c. Term frequency-inverse document frequency weighting

This schemes overcomes the drawback of term frequency model by including the global

weight. To understand the global weight and the local weight following table can be used.

Docl Doc2 Doc3 Doc4
Terml1 2 1 3
Term?2 2 1

Table 2.1: Term-document Matrix

The term1 occurs in total of 3 document while term?2 occurs in total of 2 document. Now,
the global weight of term1 = number of document(s) with the term1/total documents =
log(4/3) = 0.124. Similarly, the global weight of term2 = log(4/2) = 0.30. Thus, the global
weight is the overall importance of the term which decreases as the number of document
containing the term increases. The tf-idf scheme aims at balancing the local and the
global term occurrences in the documents and can be defined as, a;=tf;- log(N/df;) where
tf; is the term frequency in document d;, df; denotes the number of documents in which
term i appears, and N represents the total number of documents in the collection. In this

work tf-idf was adapted as standard term weighting scheme.

2.3.2 Common Measure of Similarity in VSI

2.3.1 Euclidean

This is the most commonly used measure of similarity between two vectors. Let there be
two vectors d; and d; where d; ={x1,x2,x2...xn} and d; = {yl,y2,y3...yn}, then it measures

the distance between the vectors as

D:\/; =) (1)

As the distance increases between the vectors increases, the vectors are said to be

dissimilar.

2.3.2 Cosine

It's a common measure of similarity between two vectors which measures the cosine of

the angle between them. In a txd term-document matrix A, the cosine between document

vectors d; and d; where d; ={x1,x2,x2...xn} and d; = {yl,y2,y3...yn} can be computed

according to the cosine distance formula:

n
DXy
. k 7k
L dd, £
Cosei.— *

= 2)
S
k=1 ¢ k=1 ¢

where d; and d; are the i" and j* document vector, Idil and Idjl and denotes the euclidean
length (L,) of vector d; and d; respectively. The greater the value of equation (2) , the more
similar they are said to be. As multiplying the vectors does not change the cosine, the
vectors can be scaled by any convenient value. Very often the document vectors are
normalised to a unit length. In high dimensionality such as VSI, the cosine measure has

shown better performance than Euclidean measure of similarity [14].

2.4 Feature extraction

Traditional methods in document clustering use words as measure to find
similarity between documents. These words are assumed to be mutually independent
which in real application may not be the case. Traditional VSI uses words to describe the
documents but in reality the concepts/semantics/features/topics are what describes the
documents. The extraction of these features from the documents in Feature Extraction.
The extracted features hold the most important idea/concept pertaining to the documents.
Feature extraction has been successfully used in text mining with unsupervised algorithms
like Principal Components Analysis (PCA), Singular Value Decomposition (SVD),
and Non-Negative Matrix Factorization (NMF) involving factoring the document-word

matrix[8].

2.5 Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is a novel Information Retrieval technique that
was designed to address the deficiencies of the classic VSM model:
“LSI tries to overcome the problems of lexical matching by using statistically derived
conceptual indices instead of individual words for retrieval. LSI assumes that there is
some underlying or latent structure in word usage that is partially obscured by variability
in word choice. A truncated Singular Value Decomposition (SVD) is used to estimate the
structure in word usage across documents. Retrieval is then performed using a database
of singular values and vectors obtained from the truncated SVD. Performance data shows
that these statistically derived vectors are more robust indicators of meaning than

individual terms.” Berry et. al [70]

Application of Latent Semantic Indexing with results can be found in Berry et al.

[20] and Landauer et al in [21].

2.5.1 Limitations of LSI and superiority of NMF

Singular Value Decomposition is widely used in standard factorization of data
matrix. Using SVD the vectors from the feature space contain negative values. Since
every data vector in VSM has positive value but the newly found vectors from the feature
space contain negative values, it makes difficult for interpretation. This is not the case
with NMF. NMF has been noted to have advantages over standard PCA/SVD based
factorization in paper by Lee and Seung [2,3]. In contrast to cancellations due to negative
entries in matrix factors in SVD based factorizations, the non-negativity in NMF ensures

factors contain coherent parts of the original data (text,images etc.)[11]

10

2.6 Non-negative matrix factorization (NMF)

Non-negative matrix factorization is a special type of matrix factorization where the
constraint of non-negativity is on the lower ranked matrices. It decomposes a matrix V,,
into the product of two lower rank matrices W, and Hy,, such that V,,, is approximately
equal to Wy, times Hy,.

v, ~W, -H, 3)
where, k << min(m,n) and optimum value of k depends on the application and is also
influenced by the nature of the collection itself [18]. In the application of document
clustering, k is the number of features to be extracted or it may be called the number of
clusters required. V contains column as document vectors and rows as term vectors, the
components of document vectors represent the relationship between the documents and
the terms. W contains columns as feature vectors or the basis vectors which may not

always be orthogonal (for example, when the features are not independent and have some

have overlaps). H contains columns with weights associated with each basis vectors in W.

Thus, each document vector from the document-term matrix can be approximately
composed by the linear combination of the basis vectors from W weighted by the
corresponding columns from H. Let v; be any document vector from matrix V, column
vectors of W be {W,, W,,...,W,} and the corresponding components from column of
matrix H be {h;;,hyp,....hy} then,

v.eW h +W, h,+. + W

K hik 4)

NMF uses an iterative procedure to modify the initial values of Wy, and Hy, so

11

that the product approaches V., . The procedure terminates when the approximation error
converges or the specified number of iterations is reached. The NMF decomposition is
non-unique; the matrices W and H depend on the NMF algorithm employed and the error
measure used to check convergence. Some of the NMF algorithm types are, multiplicative
update algorithm by Lee and Seung [3], sparse encoding by Hoyer [15], gradient descent
with constrained least squares by Pauca [16] and alternating least squares algorithm by
Pattero [17]. They differ in the measure cost function for measuring the divergence

between V and WH or by regularization of the W and/or H matrices.

Two simple cost functions studied by Lee and Seung are the squared error (or
Frobenius norm) and an extension of the Kullback-Leibler divergence to positive matrices.
Each cost function leads to a different NMF algorithm, usually minimizing the divergence
using iterative update rules. Using the Frobenius norm for matrices, the objective function

or minimization problem can be stated as

" ||y —WHIf;
W.H 5)

where W and H are non-negative. The method proposed by Lee and Sung [3] based on
multiplicative update rules using Forbenus norm, popularly called multiplicative method

(MM) can be described as follows.

2.6.1 MM Algorithm
(1) Initialize W and H with non-negative values.
(2) Iterate for each c, j, and i1 until within approximation error converges or after |

iterations:

12

w'vl,

(@ H —H, —0 ld (©)
T W WH| e
\va")
(b) Wic <_Wic—rlc (7)
\WHH|,, +e

In steps 2(a) and (b), e, a small positive parameter equal to 10 , is added to avoid
division by zero. As observed from the MM Algorithm, W and H remain non-negative

during the updates.

Lee and Seung [3] proved that with the above update rules objective function (3)
achieve monotonic convergence and is non-increasing, they becomes constant if and only

if W and H are at a stationary point. The solution to the objective function is not unique.

2.7 Document clustering with NMF

Ding C et. al in [11] shown that when Frobenius norm is used as a divergence and
adding an orthogonality constraint H' H =1, NMF is equivalent to a relaxed form of k-
means clustering. Wei Xu et al. were the first ones to use NMF for document clustering in
[9] where unit euclidean distance constraint was added to column vectors in W. Yang et al.
[10] extended this work by adding the sparsity constraints because sparseness is one of the
important characters of huge data in semantic space. In both of the work the clustering
has been based on the interpretation of the elements of the matrices.

“There is an analogy with the SVD in interpreting the meaning of the two non-negative
matrices U and V. Each element u; of matrix U represents the degree to which term f; € W
belongs to cluster j, while each element v; of matrix V indicates to which degree

document i is associated with cluster j. If document i solely belongs to cluster x, then v;,

13

will take on a large value while rest of the elements in i" row vector of V will take on a
small value close to zero. ”[9]

In the above statement, W~ UV

From the work of Kanjani K [12] it is seen that the accuracy of algorithm from

Lee and Seung [3] is higher than their derivatives [9,10]. In this work, the original

multiplicative update proposed by Lee and Seung in [3] is undertaken.

14

CHAPTER 3

METHODOLOGY

The following section describes the proposed model in details. It includes the
clustering method with the proposed model and the parallel implementation strategy of k-
means. The latter parts contains explanation on the k-means algorithm, brief introduction
to map-reduce and underlying architecture of Hadoop Distributed File System (HDFS)

used to run k-means algorithm.

3.1 The Proposed Model

From hereafter called KNMF. In KNMF the document clustering is done on basis
of the similarity between the extracted features and the individual documents. Let
extracted feature vectors be F={f},f,,f;....fy} computed by NMF. Let the documents in the
term-document matrix be V = {d,,d»,ds....ds}, then document d; is said to belong to cluster

fy if, the angle between d; and f, is minimum.

3.1.1 The methodology adapted
1. Construct the term-document matrix V from the files of a given folder using term
frequency-inverse document frequency
2. Normalize length of columns of V to unit Euclidean length.
3. Perform NMF based on Lee and Seung [3] on V and get W and H using (3)
4. Apply cosine similarity to measure distance between the documents d; and
extracted features/vectors of W. Assign d; to wy if the the angle between d; and wy

is smallest. This is equivalent to k-means algorithm with a single turn.

15

To run the parallel version of k-means algorithm, Hadoop is started in local
reference mode and pseudo-distributed mode and the k-means job is submitted to the
JobClient. The time taken for steps from 1 though 3 and the total time taken were noted

separately.

3.1.2 Steps in Indexing the documents in a folder

1. Determine if the document is new, update in index of not updated in index.

2. If it's up to date then do nothing what follows. If the document is new, create a
Lucene Document, if it's not updated then delete the old document and create new
Lucene Document.

3. Extract the words from the document.

4. Remove the stop-words.

5. Apply Stemming.

6. Store the created Lucene Document in index.

7. Remove stray files.

The Lucene Document contains three fields: path, contents and modified which
respectively stores the full-path of the document, the terms and modified date(to seconds).
The field path is used to uniquely identify documents in the index, the field modified is
use to avoid re-indexing the documents again if it's not modified. In the step 7) the
documents which have been removed from the folder but with entries in the index are
removed from index. This step has been followed to keep the optimal word dictionary

size.

16

The default stop-words were added from the project of Key Phrase Extraction
Algorithm [6] which defines some 499 stop-words. The stop-words are read from text file
and users can add words to the text file. After the removal of stop words, the document

was stemmed by the Porter algorithm [4].

3.2 Parallel implementation of k-means

The parallel implementation strategy of k-means algorithms in multi-core is described in
[26] as:

“In k-means [12], it is clear that the operation of computing the Euclidean
distance between the sample vectors and the centroids can be parallelized by splitting the
data into individual subgroups and clustering samples in each subgroup separately (by
the mapper). In recalculating new centroid vectors, we divide the sample vectors into
subgroups, compute the sum of vectors in each subgroup in parallel, and finally the

»»

reducer will add up the partial sums and compute the new centroids.

In the same paper it was noted that the performance of k-means algorithm with
map-reduce increased in an average 1.937 times than than its serial implementation
without map-reduce. From as low as 1.888 times in Synthetic Time Series (sample =
100001 and features = 10) to as high as 1.973 times in KDD Cup 999 (sample = 494021
and features = 41). It also adds that it was possible to achieve 54 times speedup on 64
cores.

Indeed, the performance upgrading with the increase of number of cores was

17

almost linear. This paper was the source for the foundation of Mahout project' which
include the implementation strategy of k-means algorithm in map-reduce over the
Hadoop. Implementation of k-means in MapReduce is also presented in lectures from
[23]. Drost, I [22] describes k-means of Mahout project. In [24] Gillick et. Al studied the
performance of Hadoop's implementation of MapReduce and have suggested performance

enhancing guidance as well.

3.2.1 MapReduce in KNMF

In the method proposed in this work, since the final clusters are the features
extracted from the NMF algorithms, the parallelization strategy of map-reduce can be
applied to compute the distance between the data vectors and the feature vectors. Since it
requires only one iteration, it can be considered as having only one map-reduce operation.
Furthermore, since the cluster centroid computation isn't needed only one map operation
is enough. The map operation intakes the list of feature vectors and individual data

vectors and outputs the closest feature vector for the data vector.

For instance, we have list of data vectors V = {v1,v2,...vn} and list of feature
vectors W= {w1l,w2,w3} computed by NMF. Then,
<V;, W> — map — <v;, w,>

where w,is the closest (cosine similarity,see section 2.3.2) feature vector to data vector v;,

1 http://lucene.apache.org/mahout/

18

3.3 K-Means Algorithm

3.3.1 Standard k-means

It's one of the oldest and most widely used algorithm for clustering data sets. K-
means algorithm is an expectation maximization algorithm that tries to find the cluster
centers. It tires to minimize the overall inter-cluster variance, or, the squared error

function.

v=3" % [x-u) ()

i=1 x,€8.
where there are k clusters Si, i = 1, 2, ..., k, and i 1s the centroid or mean point of all the
points xj € Si. With k-means, the number of clusters should be defined prior to running
the algorithm. The complexity of this algorithm is O(t.d.k.m) where d is number of

documents, t is the number of terms, k is the clusters required and m is the maximum

number of iteration [14].

The basic algorithm is to group points into the nearest of the pre-defined number
of clusters until the updated cluster center is within some tolerance of old respective
cluster center or until a certain number of iterations has been achieved. More specifically
the following pseudo code can represent the k-means algorithm.
/#* Pseudo code for Kmeans **/
Select any k number of cluster centers c; (i=1,2..k) and define convergence tolerance t.
Until x number of iterations is reached

For each point, p; (j=1,..n) find its nearest cluster.

If all the new cluster centers c; are within tolerance t of its old cluster centers then

stop else update to new cluster centers.

19

/** Pseudo code for Kmeans **/

An excellent tutorial on k-means can be reached in [7].

3.3.2 Spherical k-means(k-means on a unit hypersphere)

For high-dimensional data such as text data represented in document-term matrix,
cosine similarity has been shown to be more superior to Euclidean distance[14]. Since the
vectors with same component but different totals are treated identically, the direction is
important than the magnitude and the document vectors can be normalized to unit sphere
for more efficient processing [19]. The spherical k-means algorithm tries to maximize the

average cosine similarity objective:
k
T
L= 2 xim, ©
i=1 x €S,

where there are k clusters Si, i = 1, 2, ..., k, and i is the centroid or mean point of all the

points xj € Si. In this work this methodology was adapted.

3.4 MapReduce

MapReduce is a software framework introduced by Google [25] to computer large
scale data. It's based on functional programming paradigm with map and reduce
functions. The map functions processes the input set of data and generates a set of
intermediate key/value pairs. The reduce function merges the intermediate pairs with the
same key. Multiple map and/or reduce tasks are run in parallel over disjoint portions of
the input or intermediate data, thus parallelizing the computation. It has been hugely used
inside Google for parallel-programming over clusters of computers that have unreliable

communication. Since the framework handles the complexity underlying the parallel

20

communication, it allows programmers to write functional-style code that can be

automatically parallelized and scheduled in a distributed system.

MapReduce has been studied in multi-core and multi-processor system by Ranger
et al. in [27] and found to achieve good scalability using Phoenix, a programming API and
runtime based on Google's MapReduce. Chu et al. [26] studied the parallel
implementation of machine learning algorithms in a light weight architecture for

multicores based on Google's MapReduce.

3.5 Hadoop

Hadoop is a distributed file system written in Java with an additional
implementation of Google's MapReduce framework [25] that enables application based
on map-reduce paradigm to run over the file system. It provides high throughput access to

data and is suited for working with large scale data (typical block size is 64 Mb)

3.5.1 Hadoop Distributed File System (HDFS)

It is its native file system that's build to with stand fault and is designed to be
deployed on low-cost hardware. It's based on master/slave architecture. The master nodes
are called namenodes. Every cluster has only one namenode. It manages the filesystem
namespace and access to files by client (opening, closing, renaming files) . It determine
the files maping blocks to slaves or datanode . Usually there is one datanode per node.
The task of datanode is to manage the data stored in the node (each file is stored in one of

more blocks) . It's responsible for read/write requests from clients (creation, deletion,

2 http://hadoop.apache.org/core/

21

replication of blocks).

All HDFS communication protocols are layered on top of the TCP/IP protocol.
Files in HDFS are write-once(read many) and have strictly one writer at any time. The
blocks of a file are replicated for fault tolerance. The block size and replication factor are

configurable per file. Hadoop can be run in any of the below modes.

Local (Stand-alone mode)
By default, Hadoop is configured to run in a non-distributed mode, as a single Java

process. This is useful for debugging.

Pseudo-distributed Mode

Hadoop can also be run on a single-node in a pseudo-distributed mode where each

Hadoop daemon runs in a separate Java process.

Fully-distributed Mode

In this mode, multiple instances of Hadoop are run across multiple-nodes with distinction

between master and slave nodes.

3.5.2 MapReduce framework in Hadoop’
The input and output to the map-reduce application can be shown as follows:
(input) <k1,vI> — map — <k2,v2> — reduce <k3,v3> (output)

The input data is divided and processed in parallel across different

3 http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

22

machines/processes in map phase and the reduce combines the data according the key to
give final output. For this sort of task the framework should be based on master/slave
architecture. Since HDEFS is itself based on master/slave architecture, MapReduce
framework fits well in Hadoop. Moreover usually the compute nodes and the storage
nodes are the same, that is, the Map/Reduce framework and the distributed filesystem are
running on the same set of nodes. This configuration allows the framework to effectively
schedule tasks on the nodes where data is already present, resulting in very high aggregate

bandwidth across the cluster.

To implement MapReduce framework in Hadoop, there is a single master called
JobTracker per job . Job is the list of task submitted to the MapReduce framework in
Hadoop. The master is responsible for scheduling the jobs' component tasks on the slaves,
monitoring them and re-executing the failed tasks. There can be one slave or tasktracker

per cluster-node. The slaves execute the tasks as directed by the master.

23

CHAPTER 4

ARCHITECTURAL DESIGN/IMPLEMENTATION

This section describes the design and implementation of the application Swami

that was created in during this work.

4.1 Information

Version 1.0

Programming Language Java

Platform Only tested in GNU/Linux

IDE NetBeans IDE 6.0.1

UML Documentation Umbrello UML Modeller 2.0.3
License GNU GPL Version 3.0

Website www.wakhok.ac.jp/~dipesh/swami

Table 4.1 : Information about Software

Since Hadoop, Lucene and Mahout are built with Java natively, it would be easy for

interoperability between the components developed with Java. Considering this fact, Java

was chosen as the programming language. Umbrello UML Modeller has a simple yet

powerful set of modelling tools, due to which it was used for UML Documentation.

NetBeans IDE was chosen as developmental IDE accounting to its rich set of features and

easy GUI Builder tool. Respecting the principles of freedom asserted by the open source

movement, this application Swami is licensed under GNU GPL Version 3.0 which can be

obtained from the above mentioned website.

24

4.2 Use case Diagrams

Swami

Index File/Folder
User
Get Features from Folder

Change Options

Figure 4.1: The Use Case Diagram

Users of Swami interact with the system according to the above shown cases. Basically
users index files/folders and cluster files. Users can choose how to perform clustering. It
can be done with/without using NMF and/or with/without using Hadoop. Besides, these
two major use cases, users can get the main features from the folder, for this again NMF
has been used and features are shown by the words with maximum weights in matrix W.
(see section 2.6 for matrix information). Users also can find the files they are looking for
if they know the date of modification. Files are show according to the extracted feature
ordered by the weights in matrix H. Users have the option to change parameters like
number of words to represent each feature, number of files to be shown under the features,
NMF parameters like convergence/iterations, file for stop-words, location of index,

location of folders to be indexed etc.

25

Swami

Lucene

Index

Hadoop

,7
o

,<________

Clustering
Mahout

Figoure 4.2: The Component Diagram

The major components of Swami are show in the figure above. The core components are
shown inside the box and the dependent components are shown outside. The index
component has classes used for reading/writing to index, the Lucene Document and a
classes to create document-term matrix from the index. The NMF component has classes
for the NMF algorithm by Lee and Seung [3] and utility class to help perform operation
like extracting the top words in features, top files in features etc. Clustering component
has classes to help run clustering and finally the GUI component has the class for user
interface and the main class of the application. External components are Lucene that has
been used for indexing, the Mahout APIs for running map-reduce operation and Hadoop

to start the Hadoop Distributed File System.

26

ComputerA with Swami

Hadoop Master

Computer

Hadoop Slave

Needs JRE 1.5 or above with a
reachable network between the
computers.

Hadoop should be configured
properly and should be running
for it to be used by Swami

[

AN

Hadoop Slave

Computer

Figure 4.3: The Deployment Diagram

For deployment of Swami since Hadoop isn't a must, it can be easily started in a single

computer. Even using the pseudo-distributed mode of Hadoop doesn't require multi-node.

While running Hadoop in fully-distributed mode multiple nodes are required which can

be represented in the above deployment diagram.

27

x

. User
| 1.a: index(filEA)
L. 1o doindexin(fileA)
! 2.a.: create("Engligh",stopWord)

‘ 2 GuUl ‘ ‘ : IndexFiles ‘ ‘ : SnowBallAnalyzer H : IndexWriter ‘ | - IndexUtility ” : FileDocument H S INDEX |

2.b.: create(analyzer)

3: isMaodified(fileA)

4: createDocumentifileA)

: addDocument(document)

: write{document)

Figure 4.4: The Sequence Diagram for Indexing

Before the documents can be clustered, they need to be indexed. For the purpose of
indexing, Lucene APIs have been utilized. The documents are determined whether they
are up-to-date in index. If it's up to date then do nothing what follows. If the document is
new, create a Lucene Document, if it's not updated then delete the old document and
create new Lucene Document. The stop-words are removed using key-words from [6] and
Potter Stemming. [4] is applied. The stray files are removed which is not shown in the

figure. (see section 3.1.2)

28

R

- User ‘ : MainForm H :MatrGCreator| | :Indexﬁeader‘ ‘ :INDEX| | :NMF‘ | :KMeansHunnerH : FileReader

1: cluster(folderA)

|

2: getMatrix

2.a: getTermDoc

2.b: term

3: factorize(matrix)

4: start

: runJob

5: readClusterLabels :l

6: displayClusters

|]

—
1
I
I

Figure 4.5: The Sequence Diagram for Clustering

Clustering has more complex steps than Indexing the documents. It involves creation of
document-term matrix. Then users can choose to use NMF for clustering. They may or
may not use Hadoop as well. The final clusters are read from file if Hadoop is used for

clustering. Somewhat closer picture is described in the above diagram.

29

4.3 Interfaces

Teols

Help File Finder Option Refresh

File Hierarchy: Press F5 to refresh

() oooz0312
@) 0003041
() ooo3042
@) 0003045
() 0003048
@) 0003055
@) oo10118
@ 0010125
@) oo10130
@ oo10140
() oo10148
@ 0010157

Extracted Ther

Figure 4.6: Indexing Files/Folders

Options

This File/Folder isn't Indexed yet.

Please Right Cick and Press Index Option to
Index/Re-Index it.

@) oo13107
@ 0013121
@) 0013133
@ 0013139
@) oo13149

Recommended Cluster

K-Means ‘ NMF l Stop Wcrdsl nthersl

Clusters (k)

[Z] @ Cosine Distance

Iterations ' Euclidean Distance

Convergence

MMF Option

No NMF [use only NMF

) Use NMF with K-Means

Hadoop Option
No Hadoop L[| Use Hadoop (Stand-alone)

[use Hadoop (Distibuted)

Forgot What You Wrote? Find Here

Last Date of Medification

O

<)

Save Clear

Tools

Help File Finder Option Refresh Cluster

File Hierarchy: Press F5 to refresh

0012140
0012141
0012142
0012171
E 0012172
0012180
oo12187
£ 0012188
oo12195
0012196

0012203
0012204

Figure 4.7: Clustering

Extracted Therr

Time Taken(milli seconds) = &

speedo, sensor, wire, expect, it,

Z oo17071
£ 0017072
Z 0017073
0017078
0017080
0017081
oo17087
0017088
0017089
0017095
0017096
0017097
0017103
0017104
0017105
£ 0017127
4 0017128

g

Recommended Cluster

K-Means NMF | Stop Wurdsl Bthersl

Features
Words Per Feature

Iterations

Top Words
Articles

Convergence Delta

Last Date of Modification

Time Taken(milli seconds) = 14956

Fo[israelwithdraw.lebanes,peac,lebanon,]
Files[0017273,0017265,0017104,]

F1linterrog.tulkarm.tortur,shabak.detent.]
Files[0017105,0017095,0017071.]

F2[armenian.sadikov.town,cherri,azeri,]
Ty 2

Figure 4.8: File finding

30

Figure 4.9: Extracted Features/Themes

Tools

Help File Finder Option Refresh Cluster

File Hierarchy: Press F5 to refresh

E French hostage in Kabul releas

How Mumbai attacks unfelded
Obama to revise economic poli
7 Pakistan convoy attack kills fou
US consumer confidence nose
US presses Pakistan over Mum)
US recession began last year
US retail sales in record plunge

Extracted Ther

Time Taken(milli seconds) = 1708

[consum.global.condit.confid,econom,]
[mumbai,men.trawler,consum,sale.]
[kabul kidnap.egreteau,abduct foreign,]

a,a's,abaft,able,aboard,about,above,according,
accordingly,across,actually,afore,aforesaid,after|
.afterwards,again,against,agin,ago,ain't,aint,alb
eit,all,almost,alone,along,alongside,already.alsol
Jalthough,always,am,amid,amidst,among,amon
gst,an,and,anent,another,any,anybody,anyhow,
anyone.anything.anyway.anyways.anywhere.ap
art.are,aren't.around.as.aside aslant.atathwart,
available.away.b back barring.be became.becau
se,become becomes,becoming.been,before bef
orehand,behind.being below.beneath.beside be
sides,best better between,betwixt,beyond both,
but,by,c.c'mon,c's,came,can,can't,cannot,cant,
certain,certainly,circa,clearly,come.comes,com
www,cos,could,couldn't,couldst,currently,d,de,d
efinitely,despite,did,didn't,do,does,doesn't,doin
g,don't,done,down,downwards,during,durst,e,ea

ch.either.else.elsewhere.enouah.entirelv.ere.es

Recommended Cluster

K-Means | NMF | Stop Words | Others

I3

Forget What You Wrote? Find Here

Last Date of Modification

X

31

Swami: Text Miningwith/Llicene andHad

Tools

Help File Finder Option Refresh Cluster K-Means ‘ NMF l Stop WWdiI Dthersl

File Hierarchy: Press F5 to refresh—————— Extracted Therr Clusters (k) D @ Cosine Distance

O Euclidean Distance

Time Taken(milli seconds) = 5 lterations

= [0 sample
. 0012106 card, european, advanc, articl, dan,
0012107

/ oo1z108 NMF Qption
0012108
121 No NMF [] Use only NMF
0012116) use NMF with k-Means
oo12117
0012118
5 0012123 Hadoop Option
5 ggi};; Mo Hadoop [Use Hadoop (Stand-alone)
Z oo12126 [Use Hadeop (Distibuted)
Z 0012131 Recommended Cluster
Foo12132
0012133
0012134
0012139
oo12140
0012141
o012142
0012171
Foo12172
oo012179
Joo12180
oo12187
JFoo12188
0012195
4 0012196

Convergence

Last Date of Modification

<]

Figure 4.10: Top Words

32

CHAPTER 5

EXPERIMENTS AND RESULTS

To work with this model, the standard text data set 20 News Groups*® was used for
document clustering with NMF. Aforementioned application, Swami was used for the
purpose of experimentation. This section describes the data set used, experimental

parameters and the results.

5.1 Data set Description

20 News Groups is quite a popular data set for text clustering and classification. It
has a collection about 20,000 documents across 20 different newsgroups from Usenet.
Each newsgroup is stored in a subdirectory, with each article stored as a separate file.
Some of the newsgroups are closely related with each other while some are highly

unrelated. Below is the topics of the newsgroups arranged by Jason Renn’

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc | rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware |rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

misc.forsale talk.politics.misc talk.religion.misc
talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

Table 5.1: List of Topics of 20 New Groups

4 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

5 http://people.csail.mit.edu/jrennie/

33

5.2 Experiment

For the purpose of experimentation, clustering was done using up to 10 group. 5
documents were taken randomly for two group each and added to a folder. The folder was
indexed after removing the stop-words using KEA stop-words [6] and applying Porter
stemming[4]. Then the clustering was done and results were noted. Next 5 documents
were taken out randomly from another group, added to the folder, indexed and clustering
was done accordingly. In this way a total of 10 groups with 50 documents were clustered.
Clustering results were noted for three cases, without using Hadoop, using Hadoop in

local mode and finally using Hadoop in pseudo-distributed mode.

For KNMF the following parameters were used
1. NMF: convergence parameter = 0.001 and maximum iteration = 10.
2. K-Means: k = number of news groups in folder, convergence parameter = 0.001,

maximum iteration = 1, distance measure = cosine

Since the length of W was not normalized as suggested by Xu et al. [9] there was
no unique solution. For this purpose the experiments the highest values of AC among the

three cases as mentioned above was noted.

The performance of the clustering algorithm is evaluated by calculating the
accuracy defined in [9] as follows:
Given a document d; , let |; and a; be the cluster label and the label provided by the

document corpus, respectively. The AC is defined as follows:

34

Z5(ai,map(ll.))

n

AC= (10)

where n denotes the total number of documents, 6(x, y) is the delta function that equals
one if X =y and equals zero otherwise, and map(l;) is the mapping function that maps

each cluster label |; to the equivalent label from the document corpus.

5.3 Results

Table below shows the time taken by KNMF algorithm on the 20 Newsgroup
collection on a Linux Ubuntu 8.04 laptop (1.66Ghz Intel Pentium Dual-core, 1G RAM)
with and without MapReduce (Map = 2). The number of clusters were denoted by k, AC
denotes the accuracy measure. The without Hadoop and Local Reference mode of Haoop
shows time taken by KNMF as time by NMF/the total time taken. The pseudo-distributed

mode of Hadoop shows time for Map phases.

k AC Without Local Reference Pseudo-Distributed
Hadoop mode of Hadoop |mode of Hadoop
2 0.80 0.558/0.597 0.390/1.580 172
3 0.75 0.898/0.958 0.796/2.0 172
4 0.66 1.090/1.159 1.074/2.307 2/2
5 0.60 1.961/2.111 2.155/3.457 2/2
6 0.56 4.086/5.295 4.122/5.617 171
7 0.68 6.340/7.158 6.262/7.653 2/1
8 0.625 8.710/9.874 8.615/10.025 2/2
9 0.533 12.435/14.088 12.503/14.027 3/3
10 0.60 26.963/30.615 26.700/30.648 3/3

Table 5.2: Results

35

The chart below the time taken for performing only the clustering phase. Time
taken for clustering phase is calculated from the above table as (the total time taken - time
by NMF). For the pseudo-distributed mode of Hadoop, the time taken by map phase is
considered time taken for clustering. It can be seen that the time by the map phase of
pseudo-distributed mode of Hadoop is quite steady and rises only when the number of
clusters increase to 8. The time taken by local refrence and serial implementation or
without using Hadoop exceeds time taken by pseudo-distributed mode of Hadoop for

cluster size equivalent to 10.

4.5
3.5]

25 7 — Without Hadoop

/ — Local Reference
/ Pseudo-Distributed

Figure 5.1: Time taken by the clustering phase (k-means with 1 turn)

36

CHAPTER 6

CONCLUSION

In this work, a new working model for document clustering was given in this work
along with development of application based on this model. This application can be used
to organise documents into sub-folders without having to know about the contents of the
document. This really improves the performance of information retrieval in any scenario.
The accuracy of model was tested and found to be 80% for 2 clusters of documents and
75% for 3 clusters and the results averages to 65% when for 2 through 10 clusters. NMF
has shown to be a good measure for clustering document and this work has also shown
similar results when the extracted features are used as the final cluster labels for k-means
algorithm. To scale the document clustering the proposed model uses the map-reduce
implementation of k-means from Apache Hadoop Project and it has shown to scale even
in a single cluster computer when clusters size exceeded 9 i.e. 40 documents averaging 1.5

kilobytes.

37

CHAPTER 7

FUTURE WORKS

This research has tried to introduce a new working model to document clustering.
A detail experimentation on various corpus with the proposed method will be very helpful
for this work. Study of performance in fully distributed mode of Hadoop with large
number of clusters/processors could shed more light on the scalability. Inclusion of auto
detection of number of topics [18] can be quite useful to the built software. Since the
software build on the purposed model has its limitation to index only the .doc version and
text files, indexing documents in various formats with open source frameworks like
apache Tika can be continued from this work. Furthermore, the parallel implementation
of NMF by Kanjani K in [12] and Robila et al. [13] and indexing could be a good

extension for the software.

38

[1]

[3]

[4]

[7]

[8]

[9]

REFERENCES

Cutting, D, Karger, D, Pederson, J & Tukey, J (1992). Scatter/gather: A cluster-
based approach to browsing large document collections. In Proceedings of ACM
SIGIR.

Lee, D & Seung, H (1999). Learning the Parts of Objects by Non-negative matrix
factorization in Nature 401, 788—791.

Lee, D & Seung, H (2001). Algorithms for non-negatvie matrix factorization. In T.
G. Dietterich and V. Tresp, editors, Advances in Neural Information Processing
Systems, volume 13. Proceedings of the 2000 Conference: 556-562,The MIT Press.
Porter, MF (1980). "An algorithm for suffix stripping", Program, Vol. 14, No. 3,
pages 130-137

http://tartarus.org/~martin/PorterStemmer/def.txt

The Porter Stemmeing Algorithm in Snowball

http://snowball.tartarus.org/algorithms/porter/stemmer.html

Key Phrase Extraction Algorithm (KEA)

http://www.nzdl.org/Kea/

Teknomo, K. K-Means Clustering Tutorials.

http://people.revoledu.com\kardi\tutorial\kMean\

Guduru, N (2006). Text mining with support vector machines and non-negative
matrix factorization algorithm. Masters Thesis. University of Rhode Island, CS
Dept.

Xu, W, Liu, X & Gong, Y (2003). Document clustering based on non-negative

matrix factorization. Proceedings of ACM SIGIR, pages 267-273.

[10] Yang, CF, Ye, M & Zhao, J (2005). Document clustering based on non-negative

39

smb://people.revoledu.com/kardi/tutorial/kMean/
http://people.revoledu.com/
http://www.nzdl.org/Kea/
http://snowball.tartarus.org/algorithms/porter/stemmer.html

[13]

[15]

[16]

[18]

sparse matrix factorization. International Conference on advances in Natural
Computation, pages 557-563.

Ding, C, He X, & Simon, HD (2005). On the Equivalence of Nonnegative Matrix
Factorization and Spectral Clustering. Proceedings in SIAM Intternational
Conference on Data Mining, pages 606-610.

Kanjani, K (2007). Parallel Non Negative Matrix Factorization for Document
Clustering.

Robila, SA & Maciak, LG (2006). A parallel unmixing algorithm for hyperspectral
images. Technical report, Center for Imaging and Optics, Montclair State
University,.

Strehl, A, Ghosh, J & Mooney, RJ (July 2000), “Impact of similarity measures on
web-page clustering,” in AAAI Workshop on Al for Web Search, pages 58-64.
Hoyer, P (2002). Non-Negative Sparse Coding. In Proceedings of the IEEE
Workshop on Neural Networks for Signal Processing, Martigny, Switzerland.

Pauca, V, Shahnaz, F, Berry, MW & Plemmons R (April 22-24, 2004). Text Mining
Using Non-Negative Matrix Factorizations. In Proceedings of the Fourth SIAM
International Conference on Data Mining, Lake Buena Vista, FL.

Amy, L & Carl, M (2006). ALS Algorithms Nonnegative Matrix Factorization Text
Mining.

Guillamet, D & Vitria, J (2002). Determining a Suitable Metric when Using Non-
Negative Matrix Factorization. In Sixteenth International Conference on Pattern
Recognition (ICPR’02), Vol. 2, Quebec City, QC, Canada.

Dhillon, SI & Modha, DS (2001). Concept decompositions for large sparse text data

using clustering.

40

[20] Berry, M, Dumais, ST & O'Brien, GW(1995). Using Linear Algebra for Intelligent
Information Retrieval. Illustration of the application of LSA to document retrieval.

[21] Landauer, T, Foltz, PW & Laham, D(1998). Introduction to Latent Semantic
Analysis.. Discourse Processes 25: pages 259-284

[22] Drost, I (November 2008). Apache Mahout : Bringing Machine Learning to
Industrial Strength. In Proceedings of ApacheCon 2008, pages 14-29, New Orleans

[23] Michels, S (July 5, 2007). Problem Solving on Large-Scale Clusters, Lecture 4.

[24] Gillick, D, Faria, A & DeNero, J (December 18, 2006). MapReduce: Distributed
Computing for Machine Learning.

[25] Dean, J & Ghemawat, J (December 2004). MapReduce: Simplified Data Processing
on Large Clusters. In the Proceedings of the 6th Symp. on Operating Systems
Design and Implementation.

[26] Chu, CT, Kim, SK, Lin, YA, Yu, YY, Bradski, G, Yng, Andrew, & Olukotun, K
(2006). Map-Reduce for Machine Learning on Multicore, NIPS

[27] Ranger, C, Raghuraman, R, Penmetsa, A, Bradski, G & Kozyrakis, C (2007).

Evaluating MapReduce for Multi-core and Multiprocessor Systems

41

